skip to main content


Search for: All records

Creators/Authors contains: "McSkimming, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tetradecaphenyl‐p‐terphenyl (2) was synthesized from 2,3,5,6‐tetraphenyl‐1,4‐diiodobenzene (11) by two methods. Ullmann coupling of11with pentaphenyliodobenzene (9) gave compound2in 1.7 % yield, and Sonogashira coupling of11with phenylacetylene, followed by a double Diels‐Alder reaction of the product diyne12with tetracyclone (6), gave2in 1.5 % overall yield. The latter reaction also gave the monoaddition product 4‐(phenylethynyl)‐2,2′,3,3′,4′,5,5′,6,6′‐nonaphenylbiphenyl (13) in 4 % overall yield. The X‐ray structures of compounds2and13show them to possess core aromatic rings distorted into shallow boat conformations. Density functional calculations indicate that these unusual structures are not the lowest energy conformations in the gas phase and may be the result of packing forces in the crystal. In addition, while uncorrected DFT calculations indicate that the strain energy in compound2is approximately 50 kcal/mol, dispersion‐corrected DFT calculations suggest that it is essentially unstrained, due to compensating, favorable, intramolecular interactions of its many phenyl rings. An attempted synthesis of tetradecaphenyl‐o‐terphenyl (4) by reaction of diphenylhexatriyne (14) with three equivalents of tetracyclone at 350 °C gave only the diadduct 2‐(phenylethynyl)‐2′,3,3′,4,4′,5,5′,6,6′‐nonaphenylbiphenyl (15) in 17 % yield. Even higher temperatures failed to produce4and lowered the yield of15, perhaps due to rapid decomposition of the starting materials. Ullmann coupling of 3,4,5,6‐tetraphenyl‐1,2‐diiodobenzene (16) and compound9also failed to give compound4.

     
    more » « less
  2. null (Ed.)
  3. Borohydrides are widely used reducing agents in chemical synthesis and have emerging energy applications as hydrogen storage materials and reagents for the reduction of CO 2 . Unfortunately, the high energy cost associated with the multistep preparation of borohydrides starting from alkali metals precludes large scale implementation of these latter uses. One potential solution to this issue is the direct synthesis of borohydrides from the protonation of reduced boron compounds. We herein report reactions of the redox series [Au(B 2 P 2 )] n ( n = +1, 0, −1) (B 2 P 2 , 9,10-bis(2-(diisopropylphosphino)phenyl)-9,10-dihydroboranthrene) and their conversion into corresponding mono- and diborohydride complexes. Crucially, the monoborohydride can be accessed via protonation of [Au(B 2 P 2 )] − , a masked borane dianion equivalent accessible at relatively mild potentials (−2.05 V vs. Fc/Fc + ). This species reduces CO 2 to produce the corresponding formate complex. Cleavage of the formate complex can be achieved by reduction ( ca. −1.7 V vs. Fc/Fc + ) or by the addition of electrophiles including H + . Additionally, direct reaction of [Au(B 2 P 2 )] − with CO 2 results in reductive disproportion to release CO and generate a carbonate complex. Together, these reactions constitute a synthetic cycle for CO 2 reduction at a boron-based reaction center that proceeds through a B–H unit generated via protonation of a reduced borane with weak organic acids. 
    more » « less